
OPTIMIZING CROWD SIMULATION BASED ON REAL VIDEO DATA

Zhixing Jin, Bir Bhanu

Center for Research in Intelligent Systems
University of California, Riverside

jinz@cs.ucr.edu, bhanu@cris.ucr.edu

ABSTRACT

Tracking of individuals and groups in video is an active topic
of research in image processing and analyzing. This paper
proposes an approach for the purpose of guiding a crowd
simulation algorithm to mimic the trajectories of individuals
in crowds as observed in real videos, which can be further
used in image processing and computer vision research ex-
tensively. This is achieved by tuning the parameters used in
the simulation automatically. It is required because the result
of crowd simulation is very sensitive to the parameters. In
our experiment, the simulation trajectories are generated by
the RVO2 library and the real trajectories are extracted from
the UCSD crowd video dataset. The Edit Distance on Real se-
quence (EDR) between the simulated and real trajectories are
calculated. A genetic algorithm is applied to find the param-
eters that minimize the distances. The experimental results
demonstrate that the trajectory distances between simulation
and reality are significantly reduced after tuning the parame-
ters of the simulator.

Index Terms— Crowd simulation, real video data, pa-
rameter optimization, genetic algorithm

1. INTRODUCTION

Crowd is one of the most common phenomena in the real life.
It can be observed at every corner in the real world such as
streets, schools, airports, train stations, shopping malls, etc.
Therefore, there exist hundreds of topics related to crowd re-
search, as they are useful in many real applications. For in-
stance, crowd simulation is considered as an effective and ef-
ficient way in areas such as designing emergency evacuation
exits, and traffic routes. Moreover, crowd simulation, espe-
cially real-time crowd simulation, has the ability to predict lo-
cations and simulate collision-free trajectories for individuals
in crowd, which can provide valuable information to various
image processing and computer vision research topics and ap-
plications. Therefore, it can be integrated to approaches such
as tracking individuals in a complex environment, selecting
the camera for surveillance in a video network, or even ana-
lyzing the crowd behavior itself, etc.

Nowadays, many state-of-the-art crowd simulation mod-
els have been proposed, e.g. social force [1], RVO2 [2],
synthetic-vision based steering [3], and continuum dynam-
ics [4]. However, in these papers, researchers usually did not
compare the simulated trajectories to the real data because
the same situations as in simulation cannot be found in the
real world easily, or the data in reality cannot be captured
completely. For example, the emergency evacuation is one
of the most often simulated case [1], but in the reality, such
situations do not happen frequently. Even when the situation
happens, it is still difficult to get enough real data for further
comparison. Several approaches use real data in normal situ-
ations [5, 6], but they have certain limitations such as unable
to be collision-free [5] or very application-dependent [6].

In this paper, we utilize the real data of crowd in normal
situations as the comparison to results from crowd simulation
algorithms, as well as improve the simulation by optimize the
parameters of the algorithm. To elaborate, we setup an en-
vironment that is the same as the reality and then execute
the simulation algorithm to generate trajectories of individ-
uals. The trajectories from the real data and the simulation
are compared to further refine the simulator. The real data
comes from the UCSD crowd video dataset, which is a con-
tinuous surveillance video on UCSD walkways for about one
hour [7]. Parts of the dataset has been annotated which is
helpful in this work. For the crowd simulation algorithm, we
chose the RVO2 library [2]. This library is able to simulate a
collision-free motion for each agent independently based on
the optimal reciprocal collision avoidance (ORCA) formal-
ism.

For parameter optimization, genetic algorithm is adopted
based on the trajectory distances between reality and simula-
tion. Genetic algorithm is a heuristic search which is known
as one of the evolutionary computation methods [8]. To adopt
genetic algorithm, a fitness function which is able to evaluate
different parameter sets is necessary. The currently used eval-
uation metrics of simulation are mostly basic statistics such as
maximal travel time, proportion of slower walkers [3], or have
certain limitations such as specially designed for evacuation
situations (e.g. the number of person evacuated in a certain
time, the density distribution of agents over a set of polygonal
regions [1, 9, 10]). According to our experimental settings,

3186978-1-4799-2341-0/13/$31.00 ©2013 IEEE ICIP 2013

these metrics are not the most appropriate. Therefore, the
Edit Distance on Real sequence (EDR) [11] from the area of
data mining is used in the evaluation process. The EDR is de-
signed to evaluate the similarity between two trajectories, so
we use it in our experiment to calculate the distance between
real and simulated trajectories. The adoption of EDR can help
provide more detailed information for refining the simulation
algorithm while preventing the problem of over-fitting.

To the best of our knowledge, this paper is the first time
to refine crowd simulation algorithms by optimizing their
parameters based on EDR distances. The optimized crowd
simulation algorithms can then be further utilized in other
computer vision research, for example, provide predictions
of pedestrian locations in multi-people tracking tasks. The
result demonstrates that our approach significantly reduces
the distance between the simulated trajectories of individuals
and the trajectories extracted from real video. That is, the
proposed approach is effective in parameter optimization for
the simulation algorithms.

The rest of the paper is organized as follows. Section 2
describes the proposed approach in detail. The experimental
results are then illustrated in Section 3. Finally, Section 4
contains the conclusion.

2. TECHNICAL APPROACH

The purpose of our approach is to find a set of parameters
that minimizes the distances between the simulated and real
trajectories extracted from the video, that is

argmin
P∈P

||T s(P)− T r|| (1)

Where P is the parameter space and || · || is the distance
measurement, T s(P) is the simulated trajectory based on pa-
rameter set P and T r is the corresponding real trajectory.

At the beginning, we define the lower bound and the up-
per bound of the parameters (the range of the parameters),
let’s say Pmin and Pmax, where each of Pmin and Pmax

is a set of parameters that will be used in the crowd simula-
tion algorithm. Then we generate a population of parameters
through randomly picking up a set of parameters in the range
by the method of weighted average:

P =
∑
i

WiPi (2)

Here i = 1, 2, P1 = Pmin and P2 = Pmax, Wi is a
randomly generated weight vector and

∑
Wi = 1.

After that, each individual in the population is visited to
generate simulated trajectories and its fitness is calculated
based on the distance between the simulated and real tra-
jectories. When each individual has its fitness, we select
the individuals with highest fitness values to generate a new
population via crossover and mutation operations (these two

Algorithm 1 The pseudo code of the proposed approach.
Require: Pmin, Pmax

initialize(Pop)
while !stop(Pop) do

D ← ∅
for all P ∈ Pop do

d← simulate(P)
D ← D ∪ {d}

end for
F ← fitness(D)
Pop′ ← select(Pop, F)
crossover(Pop′)
mutation(Pop′, Pmin, Pmax)
Pop← Pop′

end while

operators will be discussed below in detail). This process
terminates when one of the following criteria is satisfied: 1)
the smallest trajectory distance dist < Td; 2) the smallest
average error rate of the simulated trajectories for different
sets of parameters eavg < ε (the average error rate is defined
in Section 3); 3) the maximal number of iterations is reached.

The pseudo code of the algorithm is briefly described in
Algorithm 1.

2.1. Crowd Simulation

The crowd simulation algorithm used in the current approach
is RVO2 [2]. It is capable of efficiently generating motions
of each individual without collisions based on a formalism
called optimal reciprocal collision avoidance (ORCA). The
name RVO stands for Reciprocal Velocity Obstacles, where
velocity obstacle is defined as the the set of all relative veloc-
ities of A with respect to B that will lead to a collision in time
τ . Given D(p, r) as the circle centered at p with radius r, the
velocity obstacle can be described as:

V OτA|B = {v|∃t ∈ [0, τ] : v ·t ∈ D(pB−pA, rA+rB)} (3)

Here pA and pB are the current positions for A and B,
and rA and rB are the radii of A and B. For the optimal
reciprocal collision avoidance formalism, the purpose is to
find the velocities vA and vB that are closest to voptA and voptB .
The optimal result can be obtained by using RVO2 library.
The parameters of this algorithm will be detailed described in
Section 3.

2.2. Genetic Algorithm

In the genetic algorithm, each set of parameters is considered
as an individual. The genetic algorithm keeps a population of
different individuals and requires 1) a fitness function to eval-
uate the performance of each individual and 2) the crossover
and mutation operators to generate new individuals (new pop-
ulation).

3187

To calculate the fitness of each individual, we first
use the Edit Distance on Real sequence (EDR) as the dis-
tance measurement between the real trajectory and its corre-
sponding simulated trajectory. Assume the two trajectories
T 1 and T 2 are {(t10,x, t10,y), (t11,x, t11,y), . . . , (t1m,x, t1m,y)}
and {(t20,x, t20,y), (t21,x, t21,y), . . . , (t2n,x, t2n,y)}, and the func-
tion cost(t1i , t

2
j) = 0 if and only if |t1i,x − t2j,x| < ε and

|t1i,y − t2j,y| < ε (otherwise cost = 1), then the EDR is
calculated using dynamic programming:

||T 1−T 2||EDR =

n ifm = 0
m if n = 0

min

 ||T 1
Rest − T

2
Rest||EDR + cost(t10, t

2
0),

||T 1
Rest − T

2||EDR + 1,
||T 1 − T 2

Rest||EDR + 1

otherwise

(4)

Here T iRest denotes the rest part of trajectory i. Based on
the EDR, the fitness is evaluated as below

fi(T
s(P), T r) =

1

Z
1

||T s(P)− T r||EDR
(5)

Here fi(·) is the fitness for the ith parameter set in the
population, and Z is the normalization factor.

For the crossover operator, we still use the weighted aver-
age method, that is, given two sets of parameters P i and P j ,
the new set of parameters P is obtained by

P =
∑
k

WkPk (6)

Here k = i, j, andWk is a randomly picked weight vector
which states to

∑
Wk = 1.

If one individual is selected to be mutated, then we ran-
domly choose one of its parameter pi ∈ P and use the
weighted average technique to randomly pick up its value in
the range of pi (as we did in the initialization step, but now
only for one of the parameters).

3. EXPERIMENTAL RESULTS

In this section, we report the results of our parameter opti-
mization algorithm on the UCSD crowd database (Figure 1
shows several frames from the dataset). The total number of
the annotated individuals in the dataset is 189. However, not
all these 189 individual data are used. When we optimize
the parameter, we choose 1/6 of them (i.e. 31 out of 189) as
training data and use the rest to test the optimization result. A
perspective transformation is applied to map the trajectories
from the image to the simulation plane.

In the RVO2 library, there are 10 parameters. Except the
three parameters (the position, preferred velocity, and veloc-
ity) that need to be specified and calculated with respect to
each agent, we try to optimize the rest of the seven param-
eters, including: 1) the time step of the simulation, 2) the

•••

Fig. 1. Example frames and transformed trajectories. The trajecto-
ries are extracted from the dataset by annotation.

maximal number of neighbors each agent can observe, 3) the
maximal speed, 4) the maximal observation distance, 5) the
radius of the agent, 6) the minimal amount of time for which
the agent is safe with respect to other agents, and 7) the mini-
mal amount of time for which the agent is safe with respect to
obstacles. Although some of them are not guaranteed (such
as 6) because the trajectories of other agents are fixed to real
data, the parameters are still taken into account for their pos-
sible effect on the result of simulation.

For each set of parameters, we initially tried to simulate
all the individuals at the same time, but found that the gen-
erated trajectories are quite different from the trajectories ex-
tracted from real video. The reason is that when there are
many individuals walking simultaneously, the difference be-
tween simulated and real trajectories will be eventually am-
plified, as known as the butterfly effect [12], and finally result
in a totally different scenario. Therefore, we changed the sim-
ulation strategy to simulate each individual one by one while
fixing the trajectories of all the other individuals to real data
(ground truth). That is, the simulation is only done on a sin-
gle person at each iteration. This strategy is applied for both
training and testing. We then calculated the EDR for each in-
dividual and summed them up across individuals to obtain the
total distance for a particular set of parameters.

Figure 2 compares the simulated trajectories of four indi-
viduals, as well as their corresponding data from real video.
We can see that some of the simulated trajectories are quite
similar to the real ones, but there are still some that differ
largely. The most possible reason is the density of the crowd.
The more individuals simultaneously exist in the scene (i.e.
the higher the density of the crowd becomes), the larger pos-
sibility there is for the decisions made by crowd simulation
algorithm depart from the real human behaviors. Addition-
ally, different strategies between real human and simulation
algorithm will take effect on the results (e.g. the trajectory (f)
in Figure 2). The human behavior cannot be precisely pre-
dicted because we sometimes do not know the exact target
position and we cannot take the accurate shortest path such as
line when we walk. But in the simulation, the goal of each
agent is preset and the machine will generate the shortest (or
the least time-consuming) way to reach that goal.

The measurements we use to evaluate the set of parame-
ters are based on the EDR values calculated. The first mea-

3188

0 200 400 600 800 1000 1200 1400
−200

0

200

400

600
(a)

Simulation plane (x)

S
im

ul
at

io
n

pl
an

e
(y

)

0 200 400 600 800 1000 1200 1400
−200

0

200

400

600
(b)

Simulation plane (x)

S
im

ul
at

io
n

pl
an

e
(y

)

0 200 400 600 800 1000 1200 1400
−200

0

200

400

600
(c)

Simulation plane (x)

S
im

ul
at

io
n

pl
an

e
(y

)

0 200 400 600 800 1000 1200 1400
−200

0

200

400

600
(d)

Simulation plane (x)

S
im

ul
at

io
n

pl
an

e
(y

)

0 200 400 600 800 1000 1200 1400
−200

0

200

400

600
(e)

Simulation plane (x)

S
im

ul
at

io
n

pl
an

e
(y

)

0 200 400 600 800 1000 1200 1400
−200

0

200

400

600
(f)

Simulation plane (x)

S
im

ul
at

io
n

pl
an

e
(y

)

Real Simulated

Fig. 2. Six sample trajectories. Both the simulated and the cor-
responding real trajectories are shown, with different distances be-
tween the trajectories.

surement is the average EDR value for each trajectory (in-
dividual), and the second measurement is the average error
rate. The error rate here is defined as the number of wrong
steps (EDR) over the total number of steps, and the average
error rate is the mean of the error rates for all trajectories.

eavg =
1

n

∑
of traj.

||T s(P)− T r||EDR
number of total steps

(7)

For the genetic algorithm in our experiment, the popula-
tion size is set to 50, the crossover rate is set to 0.8, and the
mutation rate is set to 0.1. The stopping threshold for the EDR
value (the distance) is set to 1000, the stop threshold for the
average error rate is set to 15%, and the maximal number of
iterations is set to 100. The initial range of each parameter is
estimated by using common knowledge. Although the sim-
ulation for one trajectory is at a real-time framerate, it takes
about 2 hours to produce and evaluate one generation on a
desktop with Intel Core Duo 2.93GHz CPU and 4GB mem-
ory.

After training, we then applied the optimized parameter
set to the simulator and then run it on testing set. We also
compared the results with the results from randomly picked
parameter set on both training set and testing set. Figure 3 (a)
is the comparison of EDR values on training set and testing set
respectively. The values from two situations (optimized and
randomly picked) are illustrated. It is shown that the EDR
values after the optimization is significantly reduced, by an
average of 304 on training set and 286 on testing set. Figure 3

0

50

100

150

200

250

300

350

400

450

Optimized Randomly

picked

A
v

er
a

g
e

E
D

R
 v

a
lu

e

(a)

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

Optimized Randomly

picked

A
v

er
a

g
e

er
ro

r
ra

te

(b)

Training set

Testing set

Fig. 3. The average EDR values and error rates on training and
testing sets. For the optimized parameters, the average EDR val-
ues are 38.7 and 127.3 (on training and testing sets respectively, the
same below), and the average error rates are 12.4% and 34.5%. For
randomly picked parameters, the average EDR values are 342.5 and
403.4, and the average error rates are 58.7% and 62.9%.

(b) is the comparison between the error rates using optimized
parameters and randomly picked parameters. The mean value
is shown in the figure. We can also address that the optimized
parameter set outperforms the randomly picked parameter set
remarkably, which is revealed by the reduced error rate, about
47% on training set and 29% on testing set. The variances
of these values are not considered since the inter-individual
difference is one of the dominate factors on the result.

4. CONCLUSIONS

Because of the importance of parameters in crowd simulation
and the lack of connection between simulated and real data,
a new approach to optimize the parameters for crowd simu-
lation algorithms is proposed in this paper. This is the first
time that the data from real video is taken into account in pa-
rameter optimization for crowd simulation algorithms. Based
on the UCSD crowd dataset, the results demonstrate that, af-
ter optimization, the error rate which measures the difference
between simulated and real trajectories decreases by 47% on
training set and 29% on testing set, which is quite significant.
In the experiment, the efficiency of our approach is limited by
the crowd simulation algorithm. In the future, we will expand
the methods for speed-up of the simulation algorithm. More-
over, after the optimized parameters are obtained, the simula-
tion is real-time at video rates and is quite helpful in predict-
ing the location of each individual within crowds. Therefore
it can be further used in many image processing and computer
vision approaches such as tracking, camera selection in video
networks.

Acknowledgement: We would like to thank the Statistical Visual
Computing Lab at University of California, San Diego to provide the
crowd video dataset. This work was supported in part by NSF grant
0905671. The contents and information do not reflect the position or
policy of the U.S. Government.

3189

5. REFERENCES

[1] D. Helbing, I. Farkas, and T. Vicsek, “Simulating dynamical
features of escape panic,” Nature, vol. 407, pp. 487, 2000.

[2] J. van den Berg, S.J. Guy, M.C. Lin, and D. Manocha, “Recip-
rocal n-body collision avoidance,” in 14th International Sym-
posium on Robotics Research, Sept. 2009.

[3] Jan Ondřej, Julien Pettré, Anne-Hélène Olivier, and Stéphane
Donikian, “A synthetic-vision based steering approach for
crowd simulation,” in ACM SIGGRAPH 2010 papers, New
York, NY, USA, 2010, SIGGRAPH ’10, pp. 123:1–123:9,
ACM.

[4] A. Treuille, S. Cooper, and Z. Popović, “Continuum crowds,”
in ACM SIGGRAPH, 2006, pp. 1160–1168.

[5] N. Courty and T. Corpetti, “Crowd motion capture,” Comput.
Animat. Virtual Worlds, vol. 18, no. 4-5, pp. 361–370, Sept.
2007.

[6] Soraia R. Musse, Cláudio R. Jung, Julio C. S. Jacques, Jr., and
Adriana Braun, “Using computer vision to simulate the motion
of virtual agents: Research articles,” Comput. Animat. Virtual
Worlds, vol. 18, no. 2, pp. 83–93, May 2007.

[7] A.B. Chan and N. Vasconcelos, “Modeling, clustering, and
segmenting video with mixtures of dynamic textures,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,
vol. 30, no. 5, pp. 909 –926, May 2008.

[8] D.J. Zwickl, Genetic algorithm approaches for the phyloge-
netic analysis of large biological sequence datasets under the
maximum likelihood criterion, Ph.D. thesis, The University of
Texas at Austin, 2006.

[9] Yohei Murakami, Toru Ishida, Tomoyuki Kawasoe, and Reiko
Hishiyama, “Scenario description for multi-agent simulation,”
in Proceedings of the second international joint conference on
Autonomous agents and multiagent systems, New York, NY,
USA, 2003, AAMAS ’03, pp. 369–376, ACM.

[10] Bikramjit Banerjee and Landon Kraemer, “Validation of agent
based crowd egress simulation,” in Proceedings of the 9th In-
ternational Conference on Autonomous Agents and Multiagent
Systems: volume 1 - Volume 1, Richland, SC, 2010, AAMAS
’10, pp. 1551–1552, International Foundation for Autonomous
Agents and Multiagent Systems.

[11] L. Chen, M. T. Özsu, and V. Oria, “Robust and fast similar-
ity search for moving object trajectories,” in ACM SIGMOD
International Conference on Management of Data, 2005, pp.
491–502.

[12] J.S. Lee and A.K. Khitrin, “Quantum amplifier: Measurement
with entangled spins,” Journal of Chemical Physics, vol. 121,
no. 9, pp. 3949–3951, Sept 2004.

3190

